THE GAP-TWO CARDINAL PROBLEM. THE SINGULAR CASE
PART I: THE SQUARE MORASS

LUIS MIGUEL VILLEGAS SILVA

ABSTRACT. In this paper we construct a so called Square Morass Wwiderl.. That is, a
Morass that involves square sequences in each of its levtissame preservation properties
between them. This Morass will be used in part 2 to prove thpeyeardinal transfer theorem,
the singular case, assuming the axiom of constructibility.

1. INTRODUCTION

As it is mentioned in the abstract, we will set up a squardl)-Morass, where is a regular
uncountable cardinal. The Morass shall comprise a squargesee in each of its level. As
we will see, this figure is indispensable to solve the Gap 2li@af transfer Theorem for the
singular case.

The two cardinal problem is described next. L%tbe a first order language with at least an
unary predicate symbda). An Z-structure2l is said to be of typéé,{), when|A| = & and
|U¥| = . Given the cardinalg < k andn < u, we write

(k,A)0(u,n)

to express that given a&’-structure2( of type (k,A ), we can find anZ-structure’ of type
(H,n) sucht thakl is elementary equivalent t8.

The specific case

(K 0D(AT)

is known as the Gap 2 Cardinal Transfer TheoremA I6 singular, we are dealing with the
singular case.

The Gap 1 problem regular has been solved under distincthgpis. Among othery, =L,
GCH, or the existence of a rough Morass ([V18b]). The singcdase was solved by R. Jensen

. A .
under GCH (or even a weaker assumption, namely=21) and the existence of@, -sequence
(for a presentation of these results: under GCH see the Alppéy J. Silver in[Jen72]; under

oA _ ) see ([Jen3))).

The Gap 2 problem regular was solved by Jensen for countaibigibges (see for example
[Dev84]) using a(A™,1)-morass. One can guarantee the existence of such a Morass und
V =L. In[Vil8] itis shown that the Gap 2 regular problem is alaeetmV = L for uncountable
languages.

The story of the Gap 2 problem singular deserves a more déw@d@scription. It is known that
R. Jensen proved that the theorem is true ukider.. He also used 6 ™, 1)-morass and a very
involved model theory. Nevertheless, the proof has beearmawlished and the manuscript is
lost. Several years ago | started to learn about morasseR.alahsen suggested me to provide
a complete and detailed proof of the problem. Since thens ldggn trying to fulfill the task.
At the beginning, the plan was to prove the theorem for firdeofogic. Thereatfter, | started
to work with infinitary logics. In specific, with consistenpyoperties and end-extensions. We
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provided solutions for the Gap 1 problem regular ([AgHeYiafhd singular ([AgHeVib]) for
infinitary logics in the following sense. Le¥’ be a first order language. Consider the infinitary
logic Lxw(-Z), wherek is an uncountable cardinal. A fragmehof this logic is a nicely closed
set ofLk(-Z)-formulas containing the first order fragmenj,,(-’). We work with p.r. closed
fragmentsA of sizek in the regular case, or sizek in the singular case.

The Gap n Cardinal Transfer problem is

(k™ K)O4(A ™ A),

which is to be understood like the first order case buthstructure of typéA (M, A) shall be
elementaryA-equivalent ta. We also solved the Gap 2 problem regular with omitting types
for a fragmentA ([ViVi]). All these results embrace the first order case, oficse.

So, itwas natural to look for a solution of the Gap 2 problengsiar in the realm of infinitary
logic. We will present a complete solution of the singulasec#or a fragment\ of size< A.

It is important to notice that an infinitary satisfiable theoan lack of arbitrary large models.
Thus, the Gap 2 problem singular will be solved under the thg®isA < k. But, whenA is

the first order fragment or th&-theory does have arbitrary large models, we can handle also
the casel > K.

The proof of the problem is rather lengthy. It consists ie&arts. The first part provides the
square Morass required for the solution. The second takeso€dhe model theory, producing
endA-elementary extensions. The third part construct the m@didrough end\-elementary
extensions using the square morass. It has been claimeth#sa processes can be accom-
plished with a normal Morass. That is, not necessarily arggoerass. As the reader will see
in part two, it is impossible to succeed when the morass doesantains square sequences in
its levels, even for the first-order case.

The construction of the square morass heavily relies orzthéne structure ([Jen]). Part
of this development takes place in arbitrary acceptablecsiresJ). That is, several results,
for instance, the lift up, hold in general acceptable strieg. We appeal to a so called Smooth
Category, whose properties are established also in thegjease. However, the square morass
is constructed ..

| would like to thank Ronald Jensen for suggesting me thisaesh. He also helped me
through the years | was completing it. | greatly appreciasegenerosity of time and energy;
always been available to answer my uncountable many questizout morasses and fine struc-
ture.

| have decided to present a complete construction of the ssoférst we introduce the*-
fine structure, only the primary notions and results. Themgstablish some necessary results
in general form. We provide a fairly complete constructida éiftup for acceptable structures.
We follow [Jen]. We have acceptable structukés- (J{,*, B), a cardinak according taM such

thatJ2 thinks that there exists a bigger cardinal. This has coresgzs in the liftup.

After that, we recall the notion of Smooth Category ([Je4e00rhis category produces
square sequences, which together with a suitable definitidhe morass order allow us to
obtain the square Morass.

2. 2*-FINE STRUCTURE

As we already mentioned, we rely in tl&-fine structure. In this section we collate def-
initions and results required in the rest of the paper. Angafimed notion can be fuound in
[Jen].
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Definition 2.1. TheJy hierarchy is defined by recursion as follows.
Jpi0=Ruds)  lim(B)

J\ = U Jy whenA is a limit of limits ordinals
y<A

We setl. =, Jo- Then ([Jen, p.66])
]P)(Ja) ﬂ Ja+w — Def(Ja)

Given a clas®\ we can form the constructible hierarchif : a € On) relativized toA. Let
A CV. TheJ} hierarchy is defined by recursion.

I8 = (a[Al, €, AN I, [A])
Jw[A = Rudy(0) = H
JprwlA =Rud(Jg)  lim(B)

A= WA forA alimitof limits ordinal
V<A

Then, we set

/ﬂ:: LJ quﬂ

aecOr
LA = 3% = (L[A], €,ANL[A])
The new notion of acceptability.

Definition 2.2. We say thatl} is acceptable if and only if for alB < v < a limit ordinals
occurs:

(@) IfaC Bandac J, o—J), then|v| < Bin Jv+w
(b) If x € Jg and¢ is Z1-formula such thady.« = ¢[B,X] but I} b= ¢[B,X], then|v| < B

inJ%, .
A J-model(J4,B) is acceptable if and only i is acceptable.
Lemma 2.3. Let M= (JA,B) be acceptable and lgt> w be a cardinal in M. Then
I =Hp = J{u:ue M :uistransitiveA JuM < y}.

Proof. [Jen, Corollary 2.5.3, p. 87]. [

Definition 2.4. LetM = (J4,B) be acceptable. We define sMg ;o andpredicates"(x",... ,X0)
as follows: 7
MO=M T°=B  M{=0forn=0
MI’H—l <‘Jpn+17 Tn+1> %= Xn XO

Tn+l(Xn+l,Y) AN E|Zn+1f|lw( n+1 _ ( Zn+l) A Mn 0 ): ¢i [Zn+l Xn]).

77777

where(¢; : i < w) is a canonical enumeration af-formulas.

Then

TR, 0) & Moo b gilXL X
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Definition 2.5. LetM = (J4,B) be acceptable. We define the good parameters
Py = [On]~®
Pl = {ac P} : there isD which is=\" (M) in awith DNHJ™ ¢ M}
R, =Pl
Ry = {ae Ry : MM = huna(p™ U (anp™)}.

Definition 2.6. mes aZr(]”) preserving map ofl to M, in symbolsit: M

M, if and only
s
h

if the following hold:
(1) M, M are acceptable structures of the same type.
(2) nH] C Hy fori<n.
(3) Setp = ¢(vil, .. ,v#ﬁ“) be aZr(]”) formula with a good sequendeof variables such that
ji,---, Jm<n. Letx e Hl fori=1,...,m. Then:

MESR <  ME¢mX).

it wis =" -preserving, it is=\"™-preserving form < n and 5,

h> 1, thenr1[H}] C HE,. We say thatris strictlyzé”) preserving (in symbolg: MTM
5"

™ _preserving fori < h. If

strictly) if and only if it isZr(]”) preserving andr 1[HJ}] C HE-. Only if h=0 can the embedding
fail to be strict.

Lemma 2.7. The condensation lema for the J-hierarchy is as follows. Met Jg, let t:

Js T Jg- Assumep,(}lﬂ < K < py, With (k) = k and ri(p) = Py, — K. Thenp = py, — K.

Z2I.
Proof. Apart from the notation change (we ys@instead ofwp"), this is [Wel0, Lemma 1.22,
p. 670]. ]
Letac [Ony|<®. We seta) =anp' fori < w.
Definition 2.8. Leta € [Ony]<®. we define partial maps, with domainw x Hy; to Hy, by:
hIa(I7X> = th"a(L (X7 a(n)>'

Thenhl is uniformlyzin) ina™,...,a%. We then define mag#] from w x H{} to H) =M
by:

Thenhl is a good=." function uniformly ina®, ..., a©. Itis clear that, ifa € R, then
hiV[w x p" Y] = H.
Therefore, ifa e R, thenh[w x p™1] = M.

Lemma 2.9. LetM, M be acceptable and let : M

- M. Suppose that there existsefR}

5

with p € ran(o). Theno is Zimﬂ) preserving.
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