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THE TWO-CARDINAL PROBLEM FOR LANGUAGES OF ARBITRARY 
CARDINALITY 

LUIS MIGUEL VILLEGAS SILVA 

Abstract. Let £ be a first-order language of cardinality K + + with a distinguished unary predicate 
symbol U. In this paper we prove, working on L, the two cardinal transfer theorem (K+,K) «S> (K + + , K+) 
for this language. This problem was posed by Chang and Keisler more than twenty years ago. 

§1. Introduction. The aim and content of this paper are twofold: first we solve an 
old open problem in model theory; secondly we give an application of the morasses 
which is different from the traditional use of them. 

Concerning the first part, the two cardinal transfer theorem for countable lan­
guages has been worked for several authors: Let K, k be infinite cardinals. Let L 
be a countable language with at least one unary predicate symbol U. Let T be an 
£-theory with a model 21 = (A, t / a ) , where \A\ = K+ and | t / a | = K. Then T has 
a model <8 = (B, U*) such that \B\ = k+, \U*\ = k and a = <8. This transfer 
theorem is denoted 

(K + ,K)=»(k+,k), 

and it is also known as the gap-1 transfer theorem. Chang solved the problem 
[Chang65] under GCH for k regular. Silver found a solution [Jen72] for k singular 
also under GCH. 

As a particular case of the Gap-1 problem, we obtain the transfer theorem 

(K+,K)-* («++,«+), 

for countable languages. 
Under the hypothesis of the existence of a (K+, l)-coarse morass, we can prove 

this transfer theorem even for languages of cardinality «+ (a proof of this appears 
in [VU106]). 

Chang and Keisler posed the following problem [CK93, p. 531, Problem 7.2.17]: 
given a language £ of arbitrary cardinality with a distinguished unary predicate 
symbol U and an ^-theory T with a model 21 = (A, C/a), where \A\ = K+ and 
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We know that 21" =̂ 0 %, hence U*" C U*\ 
Let x e 2tv with 2lv h £/x. By definition of 2lv, we can find v O v and x € 2lF 

such that tjvvi'x) = x. Since //yV is an £v"-embbedding, we have 2ly |= Ux~. 
Observe that (h) holds at the level av, so we know that U^ = U%av, hence 

x e U*a*. Therefore nVv(x) = x = x e 2lQ and since 2T =̂ 0 2lv, 21" \= Ux, so 
x e U*a. 

We have finished with the recursive construction. 
Now we can take B = UvesK+ ^ ® = **! s i n c e I ^ " + 1 = « + a n d t / K + = ^ a" for 

every v e SK+, we have | U'8 \ — K+ and of course | B | = K++. We are done. a 

PROBLEM 7.2. From [KenSh02, Corollary 3] we know the following result: Assume 
(Ni.No)** (N2.N1)- If M is a L-model with \L\ < Ni, andD is a regular ultrafilter 
on Ki, then AfK|/Z> is ^-universal. 

Taking for granted the transfer result of the present paper (Ni,Ko)=*> (N2.N1), is it 
true that if M is a L-model with |£ | = N2 and D is a regular ultrafilter on Kj, then 
MN> /D is ^-universal! 

PROBLEM 7.3. For which cardinalities |£ | /JOWJ de relation 
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