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THE TWO-CARDINAL PROBLEM FOR LANGUAGES OF ARBITRARY 
CARDINALITY 

LUIS MIGUEL VILLEGAS SILVA 

Abstract. Let £ be a first-order language of cardinality K + + with a distinguished unary predicate 
symbol U. In this paper we prove, working on L, the two cardinal transfer theorem (K+,K) «S> (K + + , K+) 
for this language. This problem was posed by Chang and Keisler more than twenty years ago. 

§1. Introduction. The aim and content of this paper are twofold: first we solve an 
old open problem in model theory; secondly we give an application of the morasses 
which is different from the traditional use of them. 

Concerning the first part, the two cardinal transfer theorem for countable lan
guages has been worked for several authors: Let K, k be infinite cardinals. Let L 
be a countable language with at least one unary predicate symbol U. Let T be an 
£-theory with a model 21 = (A, t / a ) , where \A\ = K+ and | t / a | = K. Then T has 
a model <8 = (B, U*) such that \B\ = k+, \U*\ = k and a = <8. This transfer 
theorem is denoted 

(K + ,K)=»(k+,k), 

and it is also known as the gap-1 transfer theorem. Chang solved the problem 
[Chang65] under GCH for k regular. Silver found a solution [Jen72] for k singular 
also under GCH. 

As a particular case of the Gap-1 problem, we obtain the transfer theorem 

(K+,K)-* («++,«+), 

for countable languages. 
Under the hypothesis of the existence of a (K+, l)-coarse morass, we can prove 

this transfer theorem even for languages of cardinality «+ (a proof of this appears 
in [VU106]). 

Chang and Keisler posed the following problem [CK93, p. 531, Problem 7.2.17]: 
given a language £ of arbitrary cardinality with a distinguished unary predicate 
symbol U and an ^-theory T with a model 21 = (A, C/a), where \A\ = K+ and 
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We know that 21" =̂ 0 %, hence U*" C U*\ 
Let x e 2tv with 2lv h £/x. By definition of 2lv, we can find v O v and x € 2lF 

such that tjvvi'x) = x. Since //yV is an £v"-embbedding, we have 2ly |= Ux~. 
Observe that (h) holds at the level av, so we know that U^ = U%av, hence 

x e U*a*. Therefore nVv(x) = x = x e 2lQ and since 2T =̂ 0 2lv, 21" \= Ux, so 
x e U*a. 

We have finished with the recursive construction. 
Now we can take B = UvesK+ ^ ® = **! s i n c e I ^ " + 1 = « + a n d t / K + = ^ a" for 

every v e SK+, we have | U'8 \ — K+ and of course | B | = K++. We are done. a 

PROBLEM 7.2. From [KenSh02, Corollary 3] we know the following result: Assume 
(Ni.No)** (N2.N1)- If M is a L-model with \L\ < Ni, andD is a regular ultrafilter 
on Ki, then AfK|/Z> is ^-universal. 

Taking for granted the transfer result of the present paper (Ni,Ko)=*> (N2.N1), is it 
true that if M is a L-model with |£ | = N2 and D is a regular ultrafilter on Kj, then 
MN> /D is ^-universal! 

PROBLEM 7.3. For which cardinalities |£ | /JOWJ de relation 
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